
Deep Net Triage:
Analyzing the Importance of Network Layers via Structural Compression

Theodore S. Nowak1, Jason J. Corso2,
Robotics Institute1,2

Department of Electrical Engineering and Computer Science 2

University of Michigan
Ann Arbor, MI 48109, USA

tsnowak@umich.edu, jjcorso@umich.edu

Abstract
Despite their prevalence, deep networks are poorly
understood. This is due, at least in part, to their
highly parameterized nature. As such, while cer-
tain structures have been found to work better than
others, the significance of a model’s unique struc-
ture, or the importance of a given layer, and how
these translate to overall accuracy, remains unclear.
In this paper, we analyze these properties of deep
neural networks via a process we term deep net
triage. Like medical triage—the assessment of the
importance of various wounds—we assess the im-
portance of layers in a neural network, or as we call
it, their criticality. We do this by applying struc-
tural compression, whereby we reduce a block of
layers to a single layer. After compressing a set
of layers, we apply a combination of initialization
and training schemes, and look at network accu-
racy, convergence, and the layer’s learned filters to
assess the criticality of the layer. We apply this
analysis across four data sets of varying complex-
ity. We find that the accuracy of the model does not
depend on which layer was compressed; that accu-
racy can be recovered or exceeded after compres-
sion by fine-tuning across the entire model; and,
lastly, that Knowledge Distillation can be used to
hasten convergence of a compressed network, but
constrains the accuracy attainable to that of the base
model.

1 Introduction
As computational devices and methods become more power-
ful, deep learning models are able to grow ever deeper, learn
ever more complex features, and be applied to ever more
problem spaces [Simonyan and Zisserman, 2014]. To grow
so deep without err, the most modern of networks have relied
on clever intermediary layers—such as shortcut connection
layers in [He et al., 2015]. While these methods allow for
learning representations afforded only by very deep architec-
tures, it is known that there are extraneous features and ex-
cess parameters existent in these over-parameterized models
[LeCun et al., 1990]. Strategies to optimize the size of these
networks have been pursued along a number of routes.

The question of how to best prune redundant parameters
has been the focus of deep compression methods [Bucila et
al., 2006; Han et al., 2015]. Others have investigated trans-
ferring the features or ”knowledge” of an ensemble of models
or of a single, larger, ”parent” model into a smaller model via
Knowledge Distillation [Hinton et al., 2015; Romero et al.,
2014]. And, some have set out to find methods of generating
optimal networks often via genetic algorithms [Suganuma et
al., 2017].

While called structural compression, we do not use exist-
ing network compression methods, such as [Han et al., 2015],
to compress our network. We instead focus on altering the
structure of the network, and assessing the importance of lay-
ers. We do, however, utilize existing Knowledge Distillation
practices to help perform our triage [Romero et al., 2014].

Another approach towards optimizing the parameteriza-
tion of neural networks has been to simply improve our un-
derstanding of how and what they learn. Optimization re-
searchers have begun to study the properties of the learning
space in which deep neural networks operate, and search for
bounds and guarantees therein [Haeffele and Vidal, 2015].
Alternatively, culminating in the popularity of Google’s Deep
Dream, others have focused on understanding neural net-
works via the visualization and study of their filters [Mord-
vintsev et al., ; Yosinski et al., 2015].

In this paper we take the notion of compression and apply
it structurally to the network model itself. We utilize Knowl-
edge Distillation as one method of probing the network. Upon
compression, though, we seek to understand how these com-
pressive modifications have altered the model. We do so by
first assessing accuracy and rate of convergence. We then
verify these findings by visualizing the filters learned by the
model. Amongst existing methods, our work is most similar
to that of [Zeiler and Fergus, 2013]. Like Zeiler and Fer-
gus we alter a neural network and study the effects of these
alterations. Unlike this previous work, we systematically as-
sess layers in a sequential and compressive manner in order
to understand their importance. We additionally, go beyond
the work of Zeiler and Fergus by analyzing the effects of this
process across data sets of increasing complexity, and by con-
cisely comparing their accuracies and convergence rates. We
then verify these results with qualitative interpretation of filter
activations.

We center our analysis around the VGG16 network as its

ar
X

iv
:1

80
1.

04
65

1v
2 

 [
cs

.C
V

] 
 2

2 
M

ar
 2

01
8



structure lends itself to discretization, and thus this lens of
triage and structural compression [Simonyan and Zisserman,
2014]. That is, we utilize the inherent structure of VGG16—
five blocks of two to three convolution layers, followed by a
max pooling layer—to frame our analysis.

We perform our analysis using a combination of initializa-
tion and training schemes. The initialization schemes used
include the random initialization of weights, the initialization
of weights as a combination of prior, parent filter weights,
and by training a Student-Teacher network to an intermediate
checkpoint. As for training schemes, we either train only on
the compressed layer or across the entire network after ini-
tialization.

We apply each combination of these schemes to four data
sets of increasing granularity and complexity: MNIST, CI-
FAR10, CIFAR100, and Standford Dogs. We seek to assess
whether differences in layer criticality emerge on data sets of
different complexity.

The results of our analysis are as follows. First, our exper-
iments show that no layer is more critical. That is, for each
data set maximal attainable accuracy is roughly unchanged
by which layer is compressed. Secondly, that fine-tuning over
the entire compressed model leads to novel, more optimal fil-
ter representations to be learned. Which in turn leads to above
baseline network performance. Additionally, we show that
applying a Student-Teacher framework with intermediate tar-
gets can reduce the epochs needed for a network to converge
to its maximal accuracy, which lends to the notion that they
can be used to train large networks more quickly. But this
comes at a cost, as we find that the student network cannot
learn more optimal representations than the teacher.

2 Methods of Analysis
Here, we first describe the concept of deep net triage. We then
look at how structural compression is performed, and how it
is used to compress a series of layers in a network down to a
single layer.

2.1 Deep Net Triage
To understand the criticality of various layers in a neural net-
work, we seek to isolate them, and compare them amongst
themselves and the original model in a consistent fashion. We
do so by consecutively compressing, initializing, and training
the network variants to convergence. We call this systematic
manner of analysis deep net triage to liken the compression to
illness and the layers of the model to systems of the body. As
such we hope to evaluate which are most critical to network
health and function.

2.2 Structural Compression
The VGG16 network is comprised of five blocks of convo-
lutional layers, each of which are separated by max pooling
layers. Within each block, the number of convolutional filters
per layer is held constant. To perform structural compres-
sion, we take one such block and approximate the functions
learned by the two or three layers therein with a single layer,

Figure 1: A pictorial representation of structural compression. A
series of convolutional layers is approximated by a single layer.

fc. This is also depicted pictorially in Figure 1.1

fc(xi,Wfc , bfc) ≈ f2(f1(xi,Wf1 , bf1),Wf2 , bf2) (1)

This new layer, fc, given input xi, contains learned weight
matrix Wfc and bias vector bfc , is thus tasked with approxi-
mating the final representations learned by the two previously
existent layers, f1 and f2. Where f2 is fed the output of f1,
and has learned parameters W2 and b2. Likewise, xi is the
input to f1, and f1 is parameterized by learned weight matrix
W1 and bias vector b1. Given this compressed layer, we then
test various initialization and training strategies in our deep
net triage experiments.

3 Experiments
We applied six permutations of initialization and training
compression experiments to the baseline models trained on
the four chosen data sets. We conducted these experiments
for each of the five layers blocks of VGG16 leading to a total
of 124 networks. We chose to focus on the accuracy and the
rate of convergence of these networks as measures of the crit-
icality of the layer. Upon these findings, we further conducted
qualitative filter activation analyses to verify the results.

Below, the initialization and training experiments are de-
scribed, in addition to what each implies about the com-
pressed model. This is followed by a brief nod to the data sets
for those unfamiliar, and a description of the hyperparameters
and framework used during optimization.

3.1 Initialization Methods
Random Initialization (RW)
In this initialization scheme, the weights of the compressed
layer are randomly initialized. More concretely they are ini-
tialized as samples from a Glorot Uniform Distribution [Glo-
rot and Bengio, 2010]. This tabula rasa, could be thought of
as allowing the compressed network to stray from the features
already learned by the parent model and possibly find a more
optimal set of filters.

1Note that this functional representation does not explicitly show
Batch Normalization’s tunable parameters.



Mean Parent Initialization (MW)
Via this scheme, an average of the weights in the parent’s
layer block compressed in the child model is used to initial-
ize the compressed layer. The fact that we use a strict, un-
weighted average implies that while we don’t know which of
the parent’s N filters will be most useful, we know that filters
similar to the parent’s would best represent the data. There-
fore, we load the average, favg , of the i filters contained in
the parent’s block of uncompressed layers.

favg =
1

N

N∑
i=1

fi where fi ∈ R3x3x1 (2)

Student-Teacher Network Initialization (STN)
Like intermediate hints from [Romero et al., 2014] we use a
Student-Teacher Network framework to teach the compressed
network to give the same intermediate tensor output as the
parent after the compressed layer. More concretely, we eval-
uate an L2 loss at the output of the compressed layer (after
the max pooling layer), and at the output of the uncompressed
block of layers in the parent network. We only allow for the
gradients to update the compressed layer during this process,
as it is used as a form of initialization. This initialization
method can be thought of as using the parent to guide the op-
timization of the child. The implementation of the L2 loss
function is given below.

LST N = min
Ws,bs

1

N

N∑
i=1

‖s(xi,Ws, bs)− t(xi,Wt, bt)‖2 (3)

Here, LST N is the loss function for our Student-Teacher
Network Initialization. N is the number of samples in a
batch. And xi is the sample input to VGG16 models s and
t with respective weight matrices Ws and Wt.

3.2 Training Methods
Frozen Model Weights Training (FM)
In this training scheme, after the block of layers from the par-
ent model has been compressed and initialized, we freeze all
weights outside of the compressed layer. The notion behind
this, is that a compressed layer can learn to work within the
existing framework of the parent model, and also thus that the
representations learned by the parent are most optimal.

Thawed Model Weights Training (TM)
Finally in this training strategy, we allow for gradient updates
across the entire model after the layer has been compressed.
This lends to the notion that the parent model’s representa-
tions may not be optimal for the child network, or that even
if they are, they must also be updated to optimally accommo-
date the new, compressed layer.

3.3 Data Sets
The MNIST, CIFAR10, CIFAR100, and Stanford Dogs data
sets were used to uncover generalizable trends across data
sets [LeCun and Cortes, 2010; Krizhevsky et al., ; Khosla
et al., 2011]. Below is a very brief description of the data sets
to help reinforce this notion of varying complexity.

Data Set Specific Hyperparams.
LR1 LRmin LR Decay W. Decay Epochs

MNIST .001 .00001 .5 .001 100
CIFAR10 .001 .00001 .7 .0005 100

CIFAR100 .01 .00001 .7 .0005 125
Standford Dogs .001 .0000001 .7 125

Table 1: LR1- initial learning rate, LRmin- minimum learning rate,
LR Decay- decay fraction per plateau, W. Decay- Weight Decay per
epoch, Epochs- number epochs base model trained

Constant Params.
ρ Pat. CD Comp. STN

ALL .9 1 3 25 12

Table 2: ρ- Momentum, Pat.- patience of learning rate plateau, CD-
cooldown of learning rate plateau, Comp.- epochs trained after struc-
tural compression, STN- epochs STN was trained for

MNIST MNIST contains 60,000 training and 10,000 test-
ing 28x28 greyscale images of digits from 10 classes.

CIFAR10 CIFAR10 contains 50,000 training and 10,000
testing 32x32 RGB images of objects and animals separated,
in this case, into 10 classes.

CIFAR100 CIFAR100 contains 50,000 training and 10,000
testing 32x32 RGB images of objects and animals now sepa-
rated into 100 classes.

Stanford Dogs Stanford Dogs contains 12,000 training and
8,500 testing variously sized RGB images of dog breeds sep-
arated into 120 classes.

3.4 Hyperparameters and Training
We used the VGG16 network as first presented in [Simonyan
and Zisserman, 2014] with Batch Normalization [Ioffe and
Szegedy, 2015]. We upsampled the inputs to (224,224,3)
when necessary, zero-centered and normalized, and aug-
mented the data with horizontal flips. Each baseline data
set model was trained from scratch. All experiments across
a given data set used the same hyperparameters. These are
given in Table 1. Those which did not change in any in-
stance are given in Table 2. Keras’ ReduceLROnPlateau was
used to adaptively update the learning rate [Chollet and oth-
ers, 2015].2

4 Analysis and Results
We conducted every permutation of the three initialization
and two training strategies after structural compression for
every layer block and each data set. We first looked at the
maximum accuracy achieved by each. We then assessed the
rate at which each model converged to these accuracies.

In Figure 2 we show the maximum accuracies attained by
each model. We first note that no layer is more critical than
any other. This is of surprise because as later layers are com-
pressed, more parameters, and furthermore, higher-level rep-
resentations, are removed from the model.

2Code to be released at time of publication.



Figure 2: For each data set, experiments are given in terms of which layer was compressed. The six tested experimental permutations are
shown along with the baseline achieved by the uncompressed network.

Upon further inspection of Figure 2 another trend is im-
mediately evident: that FM models—those where only the
compressed layer was allowed to train after compression—
achieve significantly lower relative accuracy. This refutes the
idea that a layer injected into a model can learn to fit into
the representations of the existing model. One may also note
that TM models—those that were fine-tuned across the whole
model—often out perform the baseline model. We believe
this to be a factor of overfitting, as found in [Zeiler and Fer-
gus, 2013]. We lastly note that TM-STN seems to break this
trend. At first on the MNIST data set, TM-STN tends to
perform poorly and on par with FM-STN. Then as the data
set complexity increases, its relative performance increases
to that of the other FM methods on Stanford Dogs. Though
it never outperforms the baseline. This pattern encouraged us
to visualize the filter activations for this method.

Specifically, we chose to visualize the filters of four vari-
ants of the CIFAR10 model: baseline, FM-STN, TM-STN,
and TM-RW. We chose this data set and these models because
in Figure 2 it is clear that on CIFAR10 the difference between
these methods were the most distinct. We can see that even
after the compression of Layer 1, that FM-STN and TM-STN
are distinctly separated, that TM-STN is very close to base-
line, and that accuracy on TM-RW is significantly higher than

that of TM-STN and the baseline. This implies that any dif-
ferences in filters between these methods might be most dis-
tinct on the CIFAR10 data set.

We used an image chosen at random from the data set and
visualized the filters at the output of the ReLU activation layer
after the compressed layer for the compressed models, and af-
ter Conv 2 of Block 1 on the baseline model. We wanted to
assess what features Block 1 was responsible for learning in
each case. In Figure 3 we show the first ten filters of these
activations. Upon close comparison, one can see that the ac-
tivation responses learned for the base and two STN networks
are similar if not identical. While the STN filters are often,
less focused and less bright, the filter’s response to the fea-
tures in the image are nearly identical. This is not the case for
the filters learned by TM-RW. In the green circles, we can see
sources of activation that differ from the other three models.

These observations indicate that the STN networks have
been forced to learn the same filter responses as the parent
network. Meanwhile, the TM-RW network has learned novel
filters, differing from the parent network, which are more op-
timally representative. This seems to show why a compressed
network can outperform its parent: because it has found a
more optimal set of features. This is additionally reflected by
the observation that in Figure 2 no STN network outperforms



Figure 3: Activations at the output of Conv. Block 1 from the Base, FM-STN, TM-STN, and TM-RW methods. Red boxes denote the filters
which contain similar Base, FM-STN, and TM-STN filters, but differing TM-RW filters. Green circles help identify those differences for the
reader.

the baseline network.
We now turn our focus to the rate of convergence of these

compressed networks. In Figure 4 there are two plots—one
for FM networks, and the other for TM networks. These show
how quickly each network converges to within 1% of its max-
imal accuracy. This indicates not at which epoch maximal ac-
curacy was achieved, but rather how long it took for the net-
work to converge. We can see that as data set complexity in-
creases, so too does the time it takes for each network to con-
verge. Additionally, though, we can see two things. Firstly,
that initialization with an average set of weights from the par-
ent network not only doesn’t help, it may even reduce the
rate of convergence. Secondly, the STN models both appear
to converge more quickly than the other models, but on dif-
fering data sets. While the FM-STN converged significantly
faster than the other models on Stanford Dogs, the TM-STN
converged even later. Similarly, the TM-STN converged more
quickly on CIFAR10 and CIFAR100, but the FM-STN didn’t.

This may be because on the simpler data sets, every model
is able to over fit thereby allowing the STN and FM mod-
els to converge and converge quickly. Meanwhile, on Stan-

ford Dogs, no model is able to do well and no overfitting oc-
curs. Therefore the TM-STN accuracy can improve to the
performance of the other TM models, and the FM-STN, at a
lower accuracy, can continue to converge more quickly then
its fellow FM models. This seems to indicate that generally
STN networks can help increase the rate of convergence of a
model.

5 Conclusions and Future Work
We present a novel method for analyzing deep neural net-
works which we refer to as deep net triage. By drawing ex-
periments from existing network compression and network
analysis methods, such as Knowledge-Distillation and fil-
ter activation visualization, we sequentially apply structural
compression to compress sections of a parent network which
then allow us to assess the criticality of each layer individu-
ally.

We show through our analysis that no layer is more crit-
ical than another. We additionally show, that rather than a
layer being able to optimize to an existing network, the en-

Figure 4: The average number of epochs for each compressed model to converge to within 99% of maximal accuracy.



tire network must be allowed to fine-tune in order fully in-
tegrate a new layer. Furthermore, that when a compressed
model is allowed to fine-tune, it is able to learn more repre-
sentative weights which can lead to increased performance.
We lastly show that while Student-Teacher Networks can im-
prove the rate of convergence of a large network model, it
cannot increase the student performance beyond that of its
teacher. These findings help build intuition and further un-
derstanding of how these layers perform and how they can be
improved.

In the future, we hope to build upon the structure of this
analysis to further probe the workings of neural networks.
While not statistically significant, we noted that the accura-
cies for each data set seem to qualitatively follow a pattern
that is unique to the data set. Additionally, to assess the effect
of overfitting on this exercise, we’d like to compress models
structurally to the point at which they fail. This combined
with the compression method from [Han et al., 2015] could
yield close to optimally compressed network models. Lastly,
further analysis of more thoughtful initialization methods and
on other, more modern neural network models could be in-
sightful.

Through this work, we hope to provide a structured way to
sequentially analyze individual portions of a neural network.
We do so to gain a better intuition for the mechanisms at play
within. While, as a community, we may continue to develop
ever better performing methods for given problem spaces, we
will never truly advance as a field until further intuition for
and understanding of deep networks is developed. As theories
are developed on one end, so too must experimental intuition
be developed on the other.

References
[Bucila et al., 2006] Cristian Bucila, Rich Caruana, and

Alexandru Niculescu-Mizil. Model compression. 2006.

[Chollet and others, 2015] François Chollet et al. Keras.
https://github.com/keras-team/keras,
2015.

[Glorot and Bengio, 2010] Xavier Glorot and Yoshua Ben-
gio. Understanding the difficulty of training deep feed-
forward neural networks. In Yee Whye Teh and Mike Tit-
terington, editors, Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics,
volume 9 of Proceedings of Machine Learning Research,
pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–
15 May 2010. PMLR.

[Haeffele and Vidal, 2015] Benjamin D. Haeffele and René
Vidal. Global optimality in tensor factorization, deep
learning, and beyond. CoRR, abs/1506.07540, 2015.

[Han et al., 2015] Song Han, Huizi Mao, and William J.
Dally. Deep compression: Compressing deep neural net-
work with pruning, trained quantization and huffman cod-
ing. CoRR, abs/1510.00149, 2015.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015.

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and
Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian
Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. CoRR,
abs/1502.03167, 2015.

[Khosla et al., 2011] Aditya Khosla, Nityananda Jayadevap-
rakash, Bangpeng Yao, and Li Fei-Fei. Novel dataset
for fine-grained image categorization. In First Workshop
on Fine-Grained Visual Categorization, IEEE Conference
on Computer Vision and Pattern Recognition, Colorado
Springs, CO, June 2011.

[Krizhevsky et al., ] Alex Krizhevsky, Vinod Nair, and Ge-
offrey Hinton. Cifar-10 (canadian institute for advanced
research).

[LeCun and Cortes, 2010] Yann LeCun and Corinna Cortes.
MNIST handwritten digit database. 2010.

[LeCun et al., 1990] Yann LeCun, John S. Denker, and
Sara A. Solla. Optimal brain damage. In D. S. Touret-
zky, editor, Advances in Neural Information Processing
Systems 2, pages 598–605. Morgan-Kaufmann, 1990.

[Mordvintsev et al., ] Alexander Mordvintsev, Christopher
Olah, and Mike Tyka. Inceptionism: Going deeper into
neural networks.

[Romero et al., 2014] Adriana Romero, Nicolas Ballas,
Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta,
and Yoshua Bengio. Fitnets: Hints for thin deep nets.
CoRR, abs/1412.6550, 2014.

[Simonyan and Zisserman, 2014] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556,
2014.

[Suganuma et al., 2017] Masanori Suganuma, Shinichi Shi-
rakawa, and Tomoharu Nagao. A genetic programming
approach to designing convolutional neural network archi-
tectures. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 497–504. ACM, 2017.

[Yosinski et al., 2015] Jason Yosinski, Jeff Clune, Anh
Nguyen, Thomas Fuchs, and Hod Lipson. Understanding
neural networks through deep visualization. arXiv preprint
arXiv:1506.06579, 2015.

[Zeiler and Fergus, 2013] Matthew D. Zeiler and Rob Fer-
gus. Visualizing and understanding convolutional net-
works. CoRR, abs/1311.2901, 2013.

https://github.com/keras-team/keras

	1 Introduction
	2 Methods of Analysis
	2.1 Deep Net Triage
	2.2 Structural Compression

	3 Experiments
	3.1 Initialization Methods
	3.2 Training Methods
	3.3 Data Sets
	3.4 Hyperparameters and Training

	4 Analysis and Results
	5 Conclusions and Future Work

